No linealidad

En matemáticas, los sistemas no lineales representan sistemas cuyo comportamiento no es expresable como la suma de los comportamientos de sus descriptores. Más formalmente, un sistema físico, matemático o de otro tipo es no lineal cuando las ecuaciones de movimiento, evolución o comportamiento que regulan su comportamiento son no lineales. En particular, el comportamiento de sistemas no lineales no está sujeto al principio de superposición, como lo es un sistema lineal.

La linealidad de un sistema permite a los investigadores hacer ciertas suposiciones matemáticas y aproximaciones, permitiendo un cálculo más sencillo de los resultados. Ya que los sistemas no lineales no son iguales a la suma de sus partes, usualmente son difíciles (o imposibles) de modelar, y sus comportamientos con respecto a una variable dada (por ejemplo, el tiempo) es extremadamente difícil de predecir.

Algunos sistemas no lineales tienen soluciones exactas o integrables, mientras que otros tienen comportamiento caótico, por lo tanto no se pueden reducir a una forma simple ni se pueden resolver. Un ejemplo de comportamiento caótico son las olas gigantes. Aunque algunos sistemas no lineales y ecuaciones de interés general han sido extensamente estudiados, la vasta mayoría son pobremente comprendidos.

Contenido

Trasfondo

Sistemas lineales

Artículo principal: Aplicación lineal

En matemáticas una función lineal es aquella que satisface las siguientes propiedades.

  1. Aditividad: f(x + y) = f(x) + f(y) \
  2. Homogeneidad: f(\alpha\,x) = \alpha\,f(x) \

Estas dos reglas tomadas en conjunto se conocen como Principio de Superposición.

Sistemas no lineales

Las ecuaciones no lineales son de interés en física y matemáticas debido a que la mayoría de los problemas físicos son implícitamente no lineales en su naturaleza. Ejemplos físicos de sistemas lineales son relativamente raros. Las ecuaciones no lineales son difíciles de resolver y dan origen a interesantes fenómenos como la teoría del caos. Una ecuación lineal puede ser descrita usando un operador lineal, L. Una ecuación lineal en algún valor desconocido de u tiene la forma

Lu = 0 \,

Una ecuación no lineal es una ecuación de la forma:

F(u)=0 \,

Para algún valor desconocido de u.

Para poder resolver cualquier ecuación se necesita decidir en qué espacio matemático se encuentra la solución u. Podría ser que u es un número real, un vector o, tal vez, una función con algunas propiedades.

Las soluciones de ecuaciones lineales pueden ser generalmente descritas como una superposición de otras soluciones de la misma ecuación. Esto hace que las ecuaciones lineales sean fáciles de resolver.

Las ecuaciones no lineales son mucho más complejas, y mucho más difíciles de entender por la falta de soluciones simples superpuestas. Para las ecuaciones no lineales las soluciones generalmente no forman un espacio vectorial y, en general, no pueden ser superpuestas para producir nuevas soluciones. Esto hace el resolver las ecuaciones mucho más difícil que en sistemas lineales.

Ecuaciones no lineales específicas

Algunas ecuaciones no lineales son bien comprendidas, por ejemplo:

y = x2 − 1

Y otras ecuaciones polinomiales.

Sin embargo, los sistemas de ecuaciones no lineales son mucho más complejos. Similarmente, ecuaciones diferenciales de primer orden no lineales, tal como:

dxu = u2

son fácilmente resueltas (en este caso por separación de variables). Las ecuaciones diferenciales de orden superior, tales como:

 d x^2 u + g \left ( u \right ) = 0

donde g es una función no lineal, son mucho más desafiantes.

Para las ecuaciones diferenciales parciales, el panorama es aún peor, ya que, aunque un número de resultados indique la existencia de soluciones, la estabilidad de una solución y la dinámica de las soluciones tienen que ser probadas.

Herramientas para la solución de ciertas ecuaciones no lineales

Al día de hoy, existen muchas herramientas para analizar ecuaciones no lineales, por mencionar algunas tenemos: dinámica de sistemas, teorema de la función implícita y la teoría de la bifurcación

  • Malinietski G.G. 2006. Fundamentos matemáticos de la sinergética. Caos, estructuras y simulación por ordenador. [1].

Ejemplo de ecuaciones no lineales

Véase también

Por hacer

  • Matemáticas del siglo 20
  • Malinietski G.G. 2006. Fundamentos matemáticos de la sinergética. Caos, estructuras y simulación por ordenador.

[2].


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • No linealidad óptica — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Linealidad — Saltar a navegación, búsqueda En general, se dice en Matemáticas que una función es lineal cuando cumple que la imagen de la suma es igual a la suma de las imágenes (esto es, ) y cuando la imagen del múltiplo de un objeto es igual al múltiplo de… …   Wikipedia Español

  • linealidad — {{#}}{{LM L23923}}{{〓}} {{SynL24511}} {{[}}linealidad{{]}} ‹li·ne·a·li·dad› {{《}}▍ s.f.{{》}} {{<}}1{{>}} Sucesión ordenada y regular de algo que se desarrolla: • Los procesos caóticos no tienen linealidad.{{○}} {{<}}2{{>}} Disposición lineal de… …   Diccionario de uso del español actual con sinónimos y antónimos

  • Juego no lineal — Saltar a navegación, búsqueda Assassin s Creed es un videojuego que permite una gran cantidad de juego no lineal Para otros usos de este término, véase Sandbox. Para ver un listado de …   Wikipedia Español

  • Videojuego no lineal — Para otros usos de este término, véase Sandbox. Para ver un listado de videojuegos no lineales, véase Categoría:Videojuegos no lineales. Un videojuego no lineal presenta al jugador desafíos que pueden ser completados en un número de secuencias… …   Wikipedia Español

  • Ondas no lineales — Las ondas son uno de los fenómenos físicos fundamentales de la naturaleza: las ondas sobre la superficie del agua y los terremotos, las ondulaciones en resortes, las ondas de luz, las ondas de radio, las ondas sonoras, etcétera. En general, se… …   Wikipedia Español

  • Elasticidad (mecánica de sólidos) — Una varilla elástica vibrando, es un ejemplo de sistema donde la energía potencial elástica se transforma en energía cinética y viceversa. En física e ingeniería, el término elasticidad designa la propiedad mecánica de ciertos materiales de… …   Wikipedia Español

  • Señales VIT — Las señales VIT, de Vertical Interval Test (VIT), son unas señales de prueba que se insertan en unas líneas concretas del intervalo vertical de la señal de vídeo con la finalidad de poder realizar medidas y ajustes de la cadena de transmisión sin …   Wikipedia Español

  • Relatividad general — Algunas partes de este artículo pueden resultar complicadas, en ese caso se recomienda Introducción a la relatividad general Representación artística de la explosión de la supernova SN 2006gy, situada a 238 millones de años luz. De ser válido el… …   Wikipedia Español

  • Farmacocinética — Saltar a navegación, búsqueda …   Wikipedia Español

Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”