Puede marcar fragmentos interesantes de texto que estarán disponibles a través de un enlace único en su navegador.

Intervalo (música)

Intervalo (música)
Intervalo melódico de quinta justa ascendente a partir de 'do'
Recibe el nombre de quinta porque hay una distancia de cinco grados entre las notas que lo forman (do y sol)
Recibe el apelativo de justa porque hay una distancia de tres tonos y un semitono entre los sonidos que lo forman.

Intervalo es la diferencia de altura —frecuencia— entre dos notas musicales, medida cuantitativamente (número) en grados o notas naturales y cualitativamente (especie) en tonos y semitonos. Su expresión aritmética es una proporción simple.

Por ejemplo:

  • Un intervalo de cinco grados es una quinta; una quinta de tres tonos y un semitono es justa.
  • Aritméticamente, la relación de frecuencias entre dos sonidos situados a distancia de quinta justa es 3:2.

Contenido

Tipos de intervalos

Intervalos simples.

La teoría musical considera tonales los intervalos de primera —unísono—, cuarta, quinta y octava y modales los de segunda, tercera, sexta y séptima.

Los intervalos tonales tienen un solo valor justo; los modales tienen un valor mayor y otro menor, propios de la modalidad en la que se encuentran.

Todos los intervalos pueden ser, además, aumentados o disminuidos.

Se consideran simples los intervalos no mayores que una octava y compuestos a los que la exceden. Los intervalos compuestos son análogos a los intervalos simples correspondientes. Así, una novena es una segunda a la octava y puede ser mayor o menor; una duodécima es análoga a una quinta y puede ser justa.

Se denomina armónico al intervalo cuyos sonidos suenan simultáneamente y melódico a aquel cuyos sonidos suenan sucesivamente.

Se llaman complementarios los intervalos que, sumados, conforman una octava: una cuarta y una quinta son complementarias. Nótese que la suma de los cuatro grados de la cuarta y los cinco grados de la quinta se resuelve en ocho grados, no nueve, porque el cuarto grado de la cuarta es a la vez el primer grado de la quinta.

Denominación de los intervalos simples

Intervalos armonicos, mostrados sobre el pentagrama a partir de la nota do. Significado de la nomenclatura utilizada y distancia de cada intervalo en tonos y semitonos:
U = unísono (dos notas iguales)
m2 = de segunda menor (1st)
M2 = de segunda mayor (1T)
m3 = de tercera menor (1T 1st)
M3 = de tercera mayor (2T)
P4 = de cuarta justa o perfecta (2T 1st)
TT = de cuarta aumentada o tritono (2T 2st)
P5 = de quinta justa o perfecta (3T 1st)
m6 = de sexta menor (3T 2st)
M6 = de sexta mayor (4T 1st)
m7 = de séptima menor (4T 2st)
M7 = de séptima mayor (5T 1st)
P8 = de octava justa o perfecta (5T 2st)
Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de onceava, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc.
Nombre del intervalo Grados[1] Distancia en tonos y semitonos Como suena en el sistema temperado
Unísono[2] / Primera justa 1 0 Mismo sonido
Primera aumentada / Semitono cromático[2] 1 1 semitono Como 2ªm
Segunda disminuida 2 0 Como unísono
Segunda menor 2 1 semitono Escuchar 2ªm ▶/i
Segunda mayor 2 1 tono Escuchar 2ªM ▶/i
Segunda aumentada 2 1 1/2 tono Como 3ªm
Tercera disminuida 3 1 tono Como 2ªM
Tercera menor 3 1 1/2 tono Escuchar 3ªm ▶/i
Tercera mayor 3 2 tonos Escuchar 3ªM ▶/i
Tercera aumentada 3 2 1/2 tono Como 4ªJ
Cuarta disminuida 4 2 tonos Como 3ªM
Cuarta justa 4 2 1/2 tonos Escuchar 4ªJ ▶/i
Cuarta aumentada (llamada tritono)[3] 4 3 tonos Escuchar 4ªA ▶/i


Quinta disminuida (llamada falsa quinta)[3] 5 3 tonos Como 4ªA
Quinta justa 5 3 1/2 tonos Escuchar 5ªJ ▶/i
Quinta aumentada 5 4 tonos Como 6ªm
Sexta disminuida 6 3 1/2 tonos Como 5ªJ
Sexta menor 6 4 tonos Escuchar 6ªm ▶/i
Sexta mayor 6 4 1/2 tonos Escuchar 6ªM ▶/i
Sexta aumentada 6 5 tonos Como 7ªm
Séptima disminuida 7 4 1/2 tonos Como 6ªM
Séptima menor 7 5 tonos Escuchar 7ªm ▶/i
Séptima mayor 7 5 1/2 tonos Escuchar 7ªM ▶/i
Séptima aumentada 7 6 tonos Como 8ªJ
Octava justa 8 6 tonos Escuchar 8ªJ ▶/i

Con la segunda nota en la siguiente octava y manteniendo la fundamental se generan los intervalos de novena, que equivale con una octava de diferencia al de segunda, el de onceava, que equivale al de cuarta, el de treceava, que equivale al de sexta, etc. Escuchar novena menor ▶/i Escuchar novena mayor ▶/i

Intervalos formados por los mismos sonidos

Puede ocurrir que dos intervalos formados por dos parejas iguales de sonidos tengan distinto nombre dependiendo de su función y del contexto musical en el que se encuentren.

Distancia en tonos
Intervalo 1/2 1 1-1/2 2 2-1/2 3 3-1/2 4 4-1/2 5 5-1/2 6
2m 2M 2A
3d 3m 3M 3A
4d 4J 4A
5d 5J 5A
6d 6m 6M 6A
7d 7m 7M 7A
8d 8
  • Horizontalmente se indica la distancia entre los sonidos.
  • Verticalmente se indican los intervalos.

Historia

Los primeros trabajos teóricos conocidos son los de Aristóxeno de Tarento, quien se basó en un método tanto empírico como matemático, a diferencia de las especulaciones filosóficas y matemáticas de Pitágoras.

Antiguamente se empleaba para su enseñanza un instrumento llamado monocordio. El cálculo matemático de las frecuencias de los sonidos e intervalos musicales fue estudiado en el siglo XVI por Simon Stevin mediante funciones exponenciales. Durante el siglo XVII, los investigadores Francesco Cavalieri y Juan Caramuel aplicaron el cálculo logarítmico.

En el siglo XIX, Hermann Helmholtz construyó los resonadores que hoy llevan su nombre, posteriormente utilizados para demostrar que todos los sonidos son por naturaleza complejos y consisten en una serie de sonidos concomitantes o armónicos naturales en intervalos que son iguales a los demostrados por el monocordio.

Consonancia y disonancia

La calificación de intervalos como consonantes o disonantes ha variado enormemente a lo largo de los siglos, así como la definición de lo consonante o disonante en sí.

Por ejemplo, durante la edad media la autoridad adjudicada a Pitágoras llevó a los especuladores a considerar a la cuarta justa como la consonancia perfecta y a utilizarla para la composición de organa. Durante la misma época, especulaciones de carácter teológico llevaron a considerar a la cuarta aumentada, llamada "tritono", como diabólica (tritonus diabolus in musica est).

La armonía tradicional desde el siglo XVII considera disonantes los intervalos armónicos de primera aumentada —semitono cromático—, segunda mayor o menor, cuarta aumentada, quinta disminuida o aumentada, séptima mayor o menor y octava disminuida o aumentada. Una posible consideración más detallada es la siguiente:

  • Consonancias perfectas: los intervalos de 4ª, 5ª y 8ª cuando son justas.
  • Consonancias imperfectas: los intervalos de 3ª y 6ª cuando son mayores o menores.
  • Disonancias absolutas: los intervalos de 2ª y 7ª mayores y menores.
  • Disonancias condicionales: todos los intervalos aumentados y disminuidos, excepto la 4ª aumentada y la 5ª disminuida.
  • Semiconsonancias: la 4ª aumentada y la 5ª disminuida.

Además, en el contexto de la armonía tradicional, el intervalo melódico de cuarta aumentada es considerado disonante.

Intervalos armónicos o melódicos

Un intervalo se puede producir tocando ambas notas al mismo tiempo (intervalo armónico), o una después de otra (intervalo melódico). En este último caso se puede diferenciar la dirección del sonido entre ascendente (cuando la segunda nota es más aguda que la primera) y descendente (cuando la segunda nota es más grave que la primera).

Inversión

Un intervalo puede ser invertido, al subir la nota inferior una octava o bajando la nota superior una octava, aunque es menos usual hablar de las inversiones de unísonos u octavas. Por ejemplo, la cuarta entre un Do grave y un Fa más agudo puede ser invertida para hacer una quinta, con un Fa grave y un Do más agudo. He aquí formas de identificar las inversiones de intervalos:

  • Para intervalos diatónicos hay dos reglas para todos los intervalos simples:
  • El número de cualquier intervalo y el número de su inversión siempre suman nueve (cuarta + quinta = nueve, en el ejemplo reciente).
  • La inversión de un intervalo mayor es uno menor (y viceversa); la inversión de un intervalo justo es otro justo; la inversión de un intervalo aumentado es un disminuido (y viceversa); y la inversión de un intervalo doble aumentado es uno doble disminuido (y viceversa).
Un ejemplo completo: Mi♭ debajo y Do por encima hacen una sexta mayor. Por las dos reglas anteriores, Do natural debajo y Mi Bemol por encima deben hacer una tercera menor.
  • Para intervalos identificados por ratio, la inversión es determinada revirtiendo el ratio y multiplicando por 2. Por ejemplo, la inversión de un ratio 5:4 es un ratio 8:5.
  • Para intervalos identificados por entero pueden simplemente ser restados de 12. Sin embargo no pueden ser invertidos.

Véase también

Referencias

  1. Entiéndase como los grados de la escala que se ven afectados por el intervalo.
  2. a b Riemann, Hugo. Teoría General de la Música. Barcelona: Idea Books. pp. 67. ISBN 84-8236-324-7. 
  3. a b Rousseau, Jean-Jacques ([1768] 2005). Diccionario de Música. Madrid: Akal. pp. Lámina C figura 2. ISBN 978-84-460-2172-8. 

Bibliografía

Enlaces externos


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Música clásica del siglo XX — Saltar a navegación, búsqueda La música clásica (culta o académica) del siglo XX fue extremadamente diversa, comenzando con el estilo romántico tardío de Sergéi Rajmáninov y el impresionismo de Claude Debussy, y llegando a mundos sonoros tan… …   Wikipedia Español

  • Intervalo — (Del lat. intervallum.) ► sustantivo masculino 1 Distancia que hay de un tiempo a otro o de un lugar a otro: ■ no se vieron en un intervalo de diez años; las repisas están colocadas a intervalos regulares. SINÓNIMO ínterin 2 MEDICINA Conjunto de… …   Enciclopedia Universal

  • Intervalo semántico — El intervalo semántico (del inglés semantic gap[1] ) es la diversidad de significado de dos descripciones de la misma cosa, debido al uso de lenguajes de expresividad distintos.[2] Esa definición no es unitaria, por lo cual el intervalo semántico …   Wikipedia Español

  • Música enchiriadis — Órganum (método de polifonía paralela). Notación usada en …   Wikipedia Español

  • Intervalo — El término Intervalo puede hacer referencia a: En matemática, un intervalo es una porción de recta. En música, un intervalo es un espacio de tiempo. En estadística, intervalo de confianza, par de números entre los cuales se estima que estará… …   Wikipedia Español

  • Música — (Del gr. musike.) ► sustantivo femenino 1 MÚSICA Arte y técnica de combinar los sonidos mediante la melodía y la armonía: ■ quiere estudiar música. 2 MÚSICA Teoría del arte y la técnica de combinar los sonidos de forma armónica y melódica. 3… …   Enciclopedia Universal

  • Música académica del siglo XX — Se ha sugerido que este artículo o sección sea fusionado con Música contemporánea (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí. La música clásica (culta o académica) del siglo XX fue… …   Wikipedia Español

  • Música del Trecento — Francesco Landini, el compositor más famoso del Trecento, tocando un órgano portativo (ilustración del siglo XV Codex Squarcialupi) El Trecento fue en Italia un período de actividad intensa en las artes, incluyendo la pintura, arquitectura,… …   Wikipedia Español

  • Música del Renacimiento — Historia de la música Este artículo forma parte de la categoría: Música Música en la Prehistoria Música en la Antigüedad Música medieval Música del Renacimiento Música del Barroco …   Wikipedia Español

  • Música y matemáticas — Se ha sugerido que este artículo o sección sea fusionado en Música (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí …   Wikipedia Español