Caudalímetro

Caudalímetro
Caudalímetro volumétrico de agua.

Un caudalímetro es un instrumento de medida para la medición de caudal o gasto volumétrico de un fluido o para la medición del gasto másico. Estos aparatos suelen colocarse en línea con la tubería que transporta el fluido. También suelen llamarse medidores de caudal, medidores de flujo o flujómetros.

Existen versiones mecánicas y eléctricas. Un ejemplo de caudalímetro eléctrico lo podemos encontrar en los calentadores de agua de paso que lo utilizan para determinar el caudal que está circulando o en las lavadoras para llenar su tanque a diferentes niveles.

Caudalímetro para gas.

Contenido

Tipos de caudalímetros

Caudalímetro visual.

Mecánicos visuales (de área variable) (rotámetros)

Se trata de un cono transparente invertido con una bola plástica en su base. El fluido al circular impulsa la bola hacia arriba, a mayor caudal más sube la bola. La gravedad hace bajar la bola al detenerse el flujo. El cono tiene unas marcas que indican el caudal.

Generalmente empleado para medir gases en lugares donde se requiere conocer el caudal con poca precisión. Un ejemplo lo podemos ver en los hospitales, unidos de la llave del suministro de oxígeno.

Una modificación de este modelo permite medir la capacidad pulmonar de una persona que haya sufrido alguna lesión recogiendo una exhalación a través de un adaptador para los labios.

A continuación podemos ver dos caudalímetros para agua indicando los caudales.

Caudalímetro de área variable midiendo líquidos.

Mecánico de molino

Consisten en un molino cuyas aspas están transversales a la circulación de fluido. El flujo hace girar el molino cuyo eje mueve un contador que acumula lecturas.

Un ejemplo de este uso son los contadores de agua de las viviendas o los antiguos contadores de gas natural.

Electrónicos de molino

Sus partes mecánicas consisten en un molino con aspas transversales a la circulación de flujo, el molino tiene en un extremo un imán permanente. Cuando este imán gira genera un campo magnético variable que es leído por un sensor de efecto de campo magnético (Hall Effect Switch), después el circuito electrónico lo convierte en pulsos que transmite a través de un cable.

Caudalímetro molino Animación de operación Tipo paleta Instalación Tipo paleta
Caudalímetro electrónico de molino.
Hall sensor tach.gif CaudalimetroPaddle.jpg CaudalimetroPaddle.gif Vista inferior.

En otra versión de este tipo de caudalímetro se instalan imanes en los extremos de las aspas. Al girar los imanes pasan cerca de un reed switch que cuenta los pulsos. La desventaja de este diseño está en la limitación de las RPM que puede alcanzar a leer un reed switch.

También existe de tipo de caudalímetro de molino en versión transparente donde solo se requiera confirmar que existe circulación sin importar el caudal.

Electrónicos de turbina

Una turbina colocada de frente al flujo, encapsulada en las paredes de un tubo, rota proporcionalmente al caudal. La turbina, fabricada con un compuesto de resina y polvo de alnico, genera un campo magnético que es leído y codificado por un Hall-Effect switch.

Diferencial de presión

Tipo venturi

Los más comunes. La tubería disminuye su diámetro levemente (por ejemplo, con un plato de orificio) y después regresa a su diámetro original. El fluido obligado a circular por esta reducción disminuye su presión a la salida. La diferencia de presión de antes y después es medida de manera mecánica o electrónica. A mayor diferencia de presión mayor es el caudal.

Existen otras variantes pero todas basadas en la diferencia de la lectura de presión antes y después. Un ejemplo es el se observa en los motores de combustión interna a la entrada del aire del motor. Parámetro que necesitan las computadoras de los automóviles para determinar que cantidad de aire está entrando al motor para logar una mezcla (aire-combustible) ideal.

V-CONE

El medidor de flujo de presión diferencial V-Cone es una tecnología patentada de medición de flujos con alta precisión, aplicable a gran variedad de fluidos, todo tipo de condiciones y un amplio intervalo de números de Reynolds. Utiliza el mismo principio físico que otros medidores de flujo de presión diferencial: el teorema de conservación de la energía del flujo de fluidos a través de una tubería. No obstante, las características de desempeño del V-Cone, muy notables, son el resultado de su exclusivo diseño, que incluye un cono central en el interior del tubo.

El cono interactúa con el flujo del fluido, modificando su perfil de velocidad para crear una región de presión más baja inmediatamente aguas abajo del cono. La diferencia entre la presión estática de la línea y la presión más baja creada aguas abajo del cono se mide a través de dos tomas piezosensibles. Una de las tomas se coloca inmediatamente aguas arriba del cono y la otra se coloca en la cara orientada aguas abajo. Después, la diferencia de presión se puede incluir en una derivada de la ecuación de Bernoulli para determinar el régimen de flujo. La posición central del cono en la línea optimiza el perfil de velocidad del flujo en el punto donde se hace la medición, asegurando mediciones de flujo altamente precisas y confiables, sin importar la condición del flujo aguas arriba del medidor.

Magnéticos

Están basados en la ley de Faraday que enuncia que el voltaje inducido a través de un conductor que se desplaza transversal a un campo magnético es proporcional a la velocidad del conductor.

Aplicamos un campo magnético a una tubería y medimos su voltaje de extremo a extremo de la tubería. Este sistema es muy poco intrusivo pero solo funciona con líquidos que tengan algo de conductividad eléctrica. Es de muy bajo mantenimiento ya que no tiene partes móviles.

Vortex

Vortex montado en una cañería.

Está basado en el principio de generación de vórtices. Un cuerpo que atraviese un fluido generará vórtices flujo abajo. Estos vórtices se forman alternándose de un lado al otro causando diferencias de presión, esta son censadas por un cristal piezoeléctrico. La velocidad de flujo es proporcional a la frecuencia de formación de los vórtices.

Son equipos de bajo mantenimiento y buena precisión.

Desplazamiento positivo

Separan el líquido en porciones que llenan un recipiente mientras se desplaza. Después cada porción es contada para medir el caudal. Existen muchas variantes de este sistema. De tornillo, de engranajes, pistones, etc


Interior de un equipo.

Engranajes: consiste en dos engranajes encontrados que hacen un sello perfecto, el fluido debe circular entre los dos engranajes forzándolos a girar. Es movimiento se puede medir de forma electrónica o mecánica.

A la derecha podemos ver el interior de un caudalímetro que se usa para medir Fuel-Oil.

Cada uno de los engranajes tiene un imán permanente que se usa para enviar información a la parte electrónica del equipo (se instala arriba mediante tornillos), y se detecta el paso del imán mediante un Hall-Effect switch.

Pistones: el agua entra por el puerto A y comienza a desplazar el pistón amarillo mientras llena el espacio C. El agua que sigue entrado ahora llena el espacio B y sigue forzando al pistón amarillo a girar hasta que el agua que ocupaba el espacio C sale por el puerto D. Posteriormente el agua que ocupa el espacio B igualmente saldrá por el puerto D al momento de comenzar otro ciclo. El agua entre los puertos de entrada y salida (A y D) está aislada por la barrera E. La oscilación del pistón G (magnético) traza un círculo que rodea al eje F. Un medidor de campo colocado fuera del caudalímetro mide estas oscilaciones y las convierte el pulsos.

CaudalimetroDesplazamientoPositivo.gif

Ultrasónicos

Son alimentados eléctricamente, y es posible encontrar dos tipos según su principio de medición: de Efecto Doppler y de Tiempo de Tránsito; este último consiste en medir la diferencia entre el tiempo que le toma a dos señales atravesar una misma distancia, pero en sentido contrario utilizando como medio un fluido. Si el caudal del fluido es nulo, los tiempos serán iguales, pero cuando hay flujo los tiempos serán diferentes, ya que las velocidades de las señales serán afectadas por la del fluido cuyo caudal se desea determinar; esta diferencia de tiempo más el conocimiento sobre la geometría de la cañería y la velocidad del sonido en el medio permiten evaluar la velocidad del fluido o el caudal.

Los de Tiempo de Tránsito son más exactos que los de efecto efecto doppler, pero para obtener lecturas se requiere que los fluidos tengan un bajo porcentaje de impurezas; en caso contrario, los de efecto doppler son de utilidad y entregan una muy buena señal, ya que su principio de funcionamiento se basa en el cambio de frecuencia de la señal reflejada sobre algún elemento que se mueve con el fluido.

La exactitud de estos sistemas de medición es muy dependiente del cumplimiento de los supuestos de flujo laminar.

Diferencial de temperatura

Se colocan dos termistores y en el centro de ellos una pequeña resistencia calentadora. Si ambos termistores leen la misma temperatura el fluido no está circulando. Según aumenta el flujo uno de los termistores lee la temperatura inicial fluido mientras que el otro lee el fluido calentado. Con este sistema no solo se puede leer el caudal, sino que además se sabe el sentido de circulación.

La ventaja de este tipo de caudalímetro es que se puede conocer la cantidad de masa del fluido que ha circulado y las variaciones de presión en el fluido; afectan poco a la medición.

Medidor de Coriolis

Los medidores de Coriolis se basan en el principio de las fuerzas inerciales que son generadas cuando una partícula en un cuerpo rotatorio se mueve con respecto al cuerpo acercándose o alejándose del centro de rotación. Si una partícula de masa dm se mueve con velocidad constante en un tubo T que esta rotando con una velocidad angular w con respecto a un punto fijo P adquiere 2 componentes de aceleración Coriolis.

Consideraciones finales

La gran cantidad de teorías y modelos de caudalímetros que existen nos confirman que no hay una fórmula ideal para medir caudal. La decisión final se debe tomar en base al caudal, viscosidad, temperatura, composición química y presión del fluido que deseamos medir. Cada aplicación tiene una caudalímetro que se adapta mejor a su necesidad.

Los costos son también un factor a considerar, la confiabilidad, precisión y durabilidad son factores muy asociados al costo. No es lo mismo buscar un caudalímetro para un producto de consumo masivo como un calentador de agua, que buscar un caudalímetro para la medir la cantidad de sangre que está circulando por un bypass o un caudalímetro para medir la cantidad de vapor a presión que se desecha a una chimenea de una planta de energía de fisión nuclear.

Referencias

  • Liquid Flowmeters teorías y ejemplos. [1]
  • Universal Vortex Flowmeters teoría, recomendaciones y ejemplos. [2]
  • M & C Industrial Thermal Mass Flowmeters teorías, principios, medición y control. [3]
  • Teorías de diseño. [4]
  • Flujómetros Ultrasónicos y Tecnología V-Cone [5]
  • Introduction to Magnetic Flow Meters teoría y ejemplos. [6]
  • Fabricante de sistemas de medición basados en medicíon térmica [7]
  • Fabricante de sistemas de caudalímetros y económetro basados en gasoil y biodisel [8]
  • Caudalímetros a engranajes ovales y Electromagnéticos principios de funcionamiento y demostraciones digitales [9]
  • Computadores de caudales [10]

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Caudalímetro — Un caudalímetro es un instrumento colocado en un conducto o corriente que mide el caudal del material transportado. También existen caudalímetros que solo miden la cantidad de materia que circula, llamados caudalímetros volumétricos o contadores …   Enciclopedia Universal

  • Efecto Coriolis — Una bolita se mueve sin fricción sobre un plato de sección parabólica que está girando a velocidad constante. La gravedad tira de la bolita hacia el centro con una fuerza directamente proporcional a la distancia respecto a éste. La fuerza… …   Wikipedia Español

  • Proporcional integral derivativo — Un PID (Proporcional Integral Derivativo) es un mecanismo de control por realimentación que calcula la desviación o error entre un valor medido y el valor que se quiere obtener, para aplicar una acción correctora que ajuste el proceso. El… …   Wikipedia Español

  • Cafetera expreso — Típica cafetera expreso doméstica de bomba. La cafetera expreso se utiliza para obtener el tradicional café italiano llamado expreso. Contenido 1 Mecanismo conductor …   Wikipedia Español

  • Acelerador electrónico — El acelerador electrónico es un dispositivo que anula la conexión mecánica que existe entre el pedal del acelerador y la mariposa del colector de admisión en los vehículos equipados con motores de gasolina. Quedando sustituida por una conexión… …   Wikipedia Español

  • Common-rail — Se ha sugerido que CRDI sea fusionado en este artículo o sección (discusión). Una vez que hayas realizado la fusión de artículos, pide la fusión de historiales aquí …   Wikipedia Español

  • Gasto másico — o Flujo másico es en física la magnitud que expresa la variación de la masa en el tiempo. Matemáticamente es la diferencial de la masa con respecto al tiempo. Se trata de algo frecuente en sistemas termodinámicos, pues muchos de ellos (tuberías,… …   Wikipedia Español

  • Instrumento de medición — Las reglas son los instrumentos de medición más populares. En física, química e ingeniería, un instrumento de medición es un aparato que se usa para comparar magnitudes físicas mediante un proceso de medición. Como unidades de medida se utilizan… …   Wikipedia Español

  • Sensor de flujo — tipo pistón. El sensor de flujo es un dispositivo que, instalado en línea con una tubería, permite determinar cuándo está circulando un líquido o un gas. Estos son del tipo apagado/encendido; determinan cuándo está o no circulando un fluido, pero …   Wikipedia Español

  • Mezcla pobre — Se dice de los motores de ciclo Otto que funcionan con mezcla pobre cuando el factor lambda es mayor de 1, es decir que la proporción de aire/combustible en peso es mayor que la estequiométrica de 14,7 a 1. Un valor moderado de factor lambda como …   Wikipedia Español